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Electrocyclization of vinylallenes to methylenecyclobutenes as
shown in eq 1 is a straightforward method to prepare cyclobutene
derivatives from open-chain precursors.1-4 However, this process
often requires a very high reaction temperature of up to 350-
450°C, which is not recommended for routine laboratory equip-
ment. Moreover, equilibrium between vinylallene and methyl-
enecyclobutene tends to result in the formation of a mixture of
the starting material and the product,2-4 or the preferred production
of vinylallene.1a These two weaknesses associated with this
transformation so far detract from its practical value in the
synthesis of cyclobutenes. To make this reaction a more routine
synthetic method, efforts should be directed to find a unidirectional
process under mild reaction conditions.4 Herein we disclose that
the isomerization of various titanated vinylallenes (R1 ) Ti(OR)3
in eq 1), which most likely involves the electrocyclization as
above, took place smoothly even at 0°C to give the corresponding
cyclobutenyltitanium species. The starting titanated vinylallenes
are readily generated in situ via the acetylene coupling reaction
with a divalent titanium alkoxide, which is another advantageous
feature from the synthetic point of view.

During the course of our study on the coupling of alkynes with
a divalent titanium alkoxide complex, (η2-propene)Ti(O-i-Pr)2 (1)5

prepared in situ from Ti(O-i-Pr)4 and i-PrMgCl (Scheme 1), we
were surprised to find that the coupling of an internal alkyne2
and a propargyl carbonate3 directly afforded methylenecy-
clobutene7 after hydrolytic workup at room temperature.6 As

depicted in Scheme 1, this reaction involves (i) the first generation
of the titanated vinylallene intermediate4 at-50 °C, the presence
of which was unambiguously verified by hydrolysis and deu-
teriolysis at the same temperature to give5,7 and (ii) most likely,
electrocyclization of the metalatedVinylallene4 to methylenecy-
clobutene6 during the warming from-50 °C to room temper-
ature (or eVen 0°C, Vide infra)! The presence of the intermediate
methylenecyclobutenyltitanium species6 was, in fact, confirmed
by the deuteriolysis, giving7-d1 with very high deuterium
incorporation.

A more detailed study on the formation of compound6
(Scheme 1) revealed that the isomerization from4 to 6 occurred
even at 0°C. Thus, the conversion reached around 50% at 0°C
for 3 h and, after 12 h at 0°C, hydrolytic workup afforded the
exclusive formation of the methylenecyclobutene7 in the same
yield as shown in Scheme 1, accompanied by no more than a
trace amount of the uncyclized vinylallene5.8 However, the
isomerization did not reach completion at-10 °C for a prolonged
period. Other control experiments confirmed the importance of
the titanated moiety in this reaction. First, the electrocyclization
of nonmetalated vinylallene5 did not proceed at all under similar
reaction conditions as shown in Scheme 1. Thus, on treatment
with Ti(O-i-Pr)4 and MgCl2 in ether at room temperature for 18
h,9 vinylallene 5 remained unchanged and was recovered in
quantitative yield. Second, an attempt to obtain the cyclobutene
from the lithiated or titanated vinylallene starting from the iodide
87 was unsuccessful due to failure to achieve the clean formation
of the intermediate vinyllithium species (eq 2). Thus, the method
of Scheme 1 adopted by us appears to be an indispensable route
to generate the metalated vinylallenes.
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Scheme 1.Preparation of a Cyclobutene Derivative from a
Titanated Vinylallene
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The present ring closure of titanated vinylallenes at room
temperature seems to be quite general as shown in Table 1.6 The
cyclobutenes7 and9-12 (entries 1-6) were obtained virtually
as a single product with respect to the position of the double
bonds. Moreover, as shown in entries 7-9, the first coupling of
the two unsymmetrical acetylenes giving titanated vinylallenes
was also highly regioselective7,10 to give single cyclobutenes13
or 14. The intermediate organotitanium species served as a reagent
for the introduction of a synthetically useful cyclobutenyl moiety
to electrophiles, which was illustrated by the reaction with an
aldehyde (entry 3), affording alcohol9. This cyclization is also
applicable to the preparation of functionalized cyclobutenes such
as those in entries 10-13. Thus, the coupling of the acetylenic
ester and propargyl carbonate in entry 10 proceeded in a highly

regioselective manner as reported previously10 to give the titanated
vinylallene intermediate,11 which directly afforded the expected
functionalized cyclobutene15 upon hydrolysis. The presence of
the titanated intermediate was confirmed analogously by deu-
teriolysis (entry 11). Acetylenic amide and the propargyl deriva-
tive in entry 13 behaved similarly to give the single cyclobutene
17 in good yield. The position of the introduced cyclobutene
double bond is heavily dependent upon the kind of substrate as
shown in entries 10-13, even though single olefinic isomers were
always produced.

In summary, titanated vinylallenes underwent facile isomer-
ization to cyclobutenyltitanium compounds12 at room temperature
(or even 0°C). The overall ease of the experimental operations
and the production of single olefinic isomers should make this
transformation quite useful for the preparation of cyclobutene
derivatives.13
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Table 1. Preparation of Various Cyclobutene Derivatives
According to Scheme 1

a Isolated yields.b Diastereomeric ratio. Major and minor structures
have not been assigned.c The ratio of olefinic geometry. Structural
assignment has not been made except for entry 4.
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